Gene-Ontology-based clustering of gene expression data
نویسندگان
چکیده
منابع مشابه
Gene-Ontology-based clustering of gene expression data
UNLABELLED The expected correlation between genetic co-regulation and affiliation to a common biological process is not necessarily the case when numerical cluster algorithms are applied to gene expression data. GO-Cluster uses the tree structure of the Gene Ontology database as a framework for numerical clustering, and thus allowing a simple visualization of gene expression data at various lev...
متن کاملIncorporating Gene Ontology with Conditional-based Clustering to Analyze Gene Expression Data
One of the purposes of the analysis of gene expression data is to cater for the cancer classification and prognosis. Currently, clustering has been introduced as a computational method to assist the analysis. However, these clustering algorithms focus only on statistical similarity and visualization presentation, thus neglecting the biological similarity and the consistency of the annotation in...
متن کاملPrediction of blood cancer using leukemia gene expression data and sparsity-based gene selection methods
Background: DNA microarray is a useful technology that simultaneously assesses the expression of thousands of genes. It can be utilized for the detection of cancer types and cancer biomarkers. This study aimed to predict blood cancer using leukemia gene expression data and a robust ℓ2,p-norm sparsity-based gene selection method. Materials and Methods: In this descriptive study, the microarray ...
متن کاملProblems in gene clustering based on gene expression data
In this work, we assess the suitability of cluster analysis for the gene grouping problem confronted with microarray data. Gene clustering is the exercise of grouping genes based on attributes, which are generally the expression levels over a number of conditions or subpopulations. The hope is that similarity with respect to expression is often indicative of similarity with respect to much more...
متن کاملClustering Gene Expression Data using a Regulation based Density Clustering
We present a density based method for clustering gene expression data using a two-objective function. The method uses regulation information as well as a suitable dissimilarity measure to cluster genes into regions of higher density separated by sparser regions. The method has been tested on five benchmark microarray datasets and found to perform well in terms of homogeneity and z-score measures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2004
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/bth289